Light-induced dynamics in photosystem I electron transfer.

نویسندگان

  • Shana L Bender
  • Bridgette A Barry
چکیده

Protein dynamics are likely to play important, regulatory roles in many aspects of photosynthetic electron transfer, but a detailed description of these coupled protein conformational changes has been unavailable. In oxygenic photosynthesis, photosystem I catalyzes the light-driven oxidation of plastocyanin or cytochrome c and the reduction of ferredoxin. A chlorophyll (chl) a/a' heterodimer, P(700), is the secondary electron donor, and the two P(700) chl, are designated P(A) and P(B). We used specific chl isotopic labeling and reaction-induced Fourier-transform infrared spectroscopy to assign chl keto vibrational bands to P(A) and P(B). In the cyanobacterium, Synechocystis sp. PCC 6803, the chl keto carbon was labeled from (13)C-labeled glutamate, and the chl keto oxygen was labeled from (18)O(2). These isotope-based assignments provide new information concerning the structure of P(A)(+), which is found to give rise to two chl keto vibrational bands, with frequencies at 1653 and 1687 cm(-1). In contrast, P(A) gives rise to one chl keto band at 1638 cm(-1). The observation of two P(A)(+) keto frequencies is consistent with a protein relaxation-induced distribution in P(A)(+) hydrogen bonding. These results suggest a light-induced conformational change in photosystem I, which may regulate the oxidation of soluble electron donors and other electron-transfer reactions. This study provides unique information concerning the role of protein dynamics in oxygenic photosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverted-region electron transfer as a mechanism for enhancing photosynthetic solar energy conversion efficiency.

In all photosynthetic organisms, light energy is used to drive electrons from a donor chlorophyll species via a series of acceptors across a biological membrane. These light-induced electron-transfer processes display a remarkably high quantum efficiency, indicating a near-complete inhibition of unproductive charge recombination reactions. It has been suggested that unproductive charge recombin...

متن کامل

Time Resolved Absorption Spectroscopy for the Study of Electron Transfer Processes in Photosynthetic Systems

Transient absorption spectroscopy was used to study light induced electron transfer processes in Type 1 photosynthetic reaction centers. Flash induced absorption changes were probed at 800, 703 and 487 nm, and on multiple timescales from nanoseconds to tens of milliseconds. Both wild type and menB mutant photosystem I reaction centers from the cyanobacterium Synechocystis sp. PCC 6803 were stud...

متن کامل

Cyclic electron transfer in photosystem II in the marine diatom Phaeodactylum tricornutum.

In Phaeodactylum tricornutum Photosystem II is unusually resistant to damage by exposure to high light intensities. Not only is the capacity to dissipate excess excitations in the antenna much larger and induced more rapidly than in other organisms, but in addition an electron transfer cycle in the reaction center appears to prevent oxidative damage when secondary electron transport cannot keep...

متن کامل

Release of oxidized plastocyanin from photosystem I limits electron transfer between photosystem I and cytochrome b6f complex in vivo.

We used fast absorbance spectroscopy to investigate in vivo binding dynamics and electron transfer between plastocyanin (pc) and photosystem I (PSI), and cytochrome (cyt) f oxidation kinetics in Chlamydomonas reinhardtii mutants in which either the binding or the release of pc from PSI was diminished. Under single flash-excitation conditions, electron flow between PSI and the cyt complex was no...

متن کامل

FTIR spectroelectrochemistry combined with a light-induced difference technique: Application to the iron-quinone electron acceptor in photosystem II

Photosystem II (PSII) in plants and cyanobacteria performs light-driven water oxidation to obtain electrons necessary for CO2 fixation. In PSII, a series of electron transfer reactions take place from the Mn4CaO5 cluster, the catalytic site of water oxidation, to a plastoquinone molecule via several redox cofactors. Light-induced Fourier transform infrared (FTIR) difference spectroscopy has bee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 95 8  شماره 

صفحات  -

تاریخ انتشار 2008